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Abstract—In this lab, we will levitate a metal ball by using an
electromagnet. The system is highly nonlinear and unstable, and
will be linearized using an affine linearization on a small range
around a designated trim point. Once a linearized model of the
system is obtained, we will create full-state and PID controllers
in order to make the system levitate the ball at a stable position.

Index Terms—xPC target, electromagnet, magnet, full state,
PID, PD, affine linearization, nonlinear systems

1. INTRODUCTION/OBJECTIVES

IN THIS LAST LAB ACTIVITY, we will analyze an
unstable and nonlinear system. Using affine linearization,

we will attempt to make a ball metal levitate by using an
electromagnet and an optical sensor. To achieve this goal, we
will utilize a few different controller architectures, such full-
state and PID controllers.

A. Experiment Objectives

The first goal of this lab activity is to obtain system param-
eters and calibrate all of the experimental apparatus. Once this
is done, the next step will be to derive a relationship between
magnetic force and distance to the magnet, and then create a
simulated model of the plant. After this step is achieved, an
affine linearization is to be performed on the system to allow
the use of linear controllers to tackle the issue. Finally, full-
state, PD and PID controllers are to be implemented in an
attempt to make the ball levitate.

2. EXPERIMENTAL APPARATUS

IN THIS EXPERIMENT, we worked with a MAT-
LAB/Simulink host computer environment, as well as an

xPC target environment. The experimental apparatus consisted
of an optical sensor, a force transducer, a position stand, and
an electromagnet. The electromagnet and optical sensor were
mounted in a wooden stand to ensure a constant distance
between both of the devices.

3. SYSTEM MODELING

THE OBJECTIVE of this lab activity is to model and
analyze an electromagnet and an optical sensor. The

results obtained from these analyses will then be used in
conjuction with different controllers to make the metal ball
levitate.

Fig. 1. Experimental results of the force transducer and polyfit approximation

A. Mathematical Model

Many of the physical relationships in this experiment were
highly non-linear, and the best way to proceed was to empiri-
cally study their behavior. As an initial experiment, we used a
mounted force stand transducer to determine the force exerted
by the magnet at different z-positions (vertical positions) of
the ball.

Fig. 1 shows the experimental resuts obtained from the
calibration of the force stand transducer, and the linear polyfit
approximation made with those results. Using the polyfit
function in MATLAB, we obtained the following results:

Fpoly = 12.4076 − 4.9037Vt

Where Vt is the voltage outputted by the transducer, and F
the inputted force.

In a similar manner, the voltage output from the position
sensor was collected at different z-locations of the ball. The
results are shown in Fig. 2.

As can be seen from these results, there is a linear corre-
spondence between position and voltage. On the other hand,
the optical sensor exhibits cubic behavior. We can also see
that there is a small range where the optical sensor can be
approximated as a linear function from 0.25 to 5V and from
23 to 28 mm from the magnet. To avoid further complications,
the point where the ball is to be levitated will be placed within
this distance interval. See Fig. 3 for the optical sensor data.

B. Parameters Determination

To determine the forces that the magnet should exert in
order to levitate the ball, a relationship between force and the
distance from the magnet should be established. The magnet
was given specific input voltages, and at each voltage we
performed a sweep to record the magnetic force at various
distances to the magnet. The results are shown in Fig. 4.
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Fig. 2. Experimental results of the position sensor and polyfit approximation

Fig. 3. Experimental results of the optical sensor

After performing the magnetic sweeps, we reduced the data
obtained from the force transducer and the position sensor in
order to establish the relationship between force and distance.
The reduced data can be seen in Fig. 5 .

As we can see, the plots in Fig. 5 show an exponential
evolution. For this reason, we can assume that for each plot:

Fm (z, Vm) = αzβ

log (Fm) = log(α) + βlog(z)

Fig. 4. Experimental results of the magnets sweep

Fig. 5. Magnet sweep data reduced to show Force vs Distance

Fig. 6. Numeric approximation of magnetic force vs distance

Therefore, using Eq. 3-B, we can approximate the values
of α and β, and then find a numeric approximation of the
relationship between force and distance. This relationship is
shown in Fig. 5.

C. Nonlinear State Space Representation

Since the magnetic force depends on two variables, the
result is a family of non-linear curves. Rather than trying
to derive a transfer function, we will tackle this problem by
creating a 2D look-up table. Once this step is completed,
a state-space representation of the model will be derived.
Assuming the only forces acting on the ball are gravity and
magnetic force, we can use Newton’s 2nd law on the ball:

ΣFz = mz̈(t)

mz̈(t) = Fm − mg

It is assumed that when the ball is levitating an equilibrium
is reached between the two aforementioned forces. Therefore,
if a trim point is to be selected it would be of the form:

−
z =

[
z(t)
ż(t)

]
−
z trim =

[
ztrim

0

]
To find a trim point, we need to look at the situation

where magnetic force and gravity cancel each other, and select
a trim point then find its respective input voltage for the
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Fig. 7. Simulink model to be used with an affine linear approximation

electromagnet. We chose a distance of 26 mm for the trim
point in order to be at the center of the linear range within the
optical sensor’s output.

−
z trim =

[(
0.026

0

)]
u0 = −3.572V

The system is a highly non-linear one, so we performed
an affine linearization. The affine linearization is based on the
following assumptions:

f(x) ≈ f(x0) +
(x− x0) δf(x0)

δx

∆f(x) = f(x) − f(xo)

∆f(x) ≈ (x− x0) δf(x0)

δx
Then the state-space affine linearization is reduced to:

∆
−̇
z = A∆

−
z + B∆

−
u

∆
−
y = C∆

−
x + D∆

−
u

For this experiment the matrices A, B, C and D were
obtained using the MATLAB function linmod().

D. Simulink Modeling
The Simulink model shown in Fig. 7 can be used after we

first recognize the following equalities:

∆z(t) = z(t) − z0

∆u(t) = u(t) − u0

∆yd(t) = yd(t) − yd,0

∆y(t) = y(t) − y0

∆e(t) = e(t)

Following the model in Fig. 7, the idea is to create a plant
simulation of the system by using the 2D look-up table. A
linear controller can be used, so long as it doesn’t deviate too
much from the trim position, and the trim conditions are added
or substracted as dictated by the derivation.

Fig. 8. Voltage output by the controller with respect to trim voltage ∆u

4. CONTROL SYSTEM DESIGN

For this type of system, we will study the performance
of two highly effective linear control systems: the full-state
feedback controller, and a PID controller.

A. Full State Feedback Controller

A full-state feedback controller works as a regulator, trying
to keep the system fixed around a specific value. This is exactly
what we hope to accomplish by levitating the ball. Since the
full-state feedback controller basically uses a different gain
for each state parameter of the system, it can be simplified as
follows:

−̇
x(t) = A

−
x(t) +B

(
−K−

x(t)
)

−̇
x(t) = A− BK

−
x(t)

−̇
x(t) = Acl

−
x(t)

It is important to know that the system is not fully control-
lable; this means that despite the use of a full-state feedback
controller, not every parameter can be set as desired. However,
the current objective of making the ball levitate is the same
as fixing the ball in a pre-set position. Therefore, the K gain
values all other parameters are unimportant, so long as the trim
position and the corresponding gain are correct. For the first
attempt to find gains, we used a pole placement method. By
setting the eigenvalues, or answers to Eq. 4-A, to the arbitrarily
chosen poles of -120, -110, and -100, the controller is expected
to deliver the desired outputs, and to exhibit stability due to
its strictly negative eigenvalues. The data obtained is shown
in Fig. 8 and Fig. 9.

The graphs shown in Fig. 8 and Fig. 9 show voltages that
the experimental setup will not be able to produce.

To acquire more optimal results, we used the LQR algorithm
to select gains via the MATLAB function lqr(). The values of
the matrices Q and R needed to compute the gains where
chosen as identity matrices in both cases. In our tests, the ball
stuck immediately to the magnet, making the test unsuccessful.
The data we obtained is shown in Fig. 10 and Fig. 11.

Fig. 10 shows that on average, the controller outputs voltage
in the range of 30V. This range is outside the limits of



AA448: CONTROL SYSTEMS SENSORS AND ACTUATORS, WINTER 2014 4

Fig. 9. Change in position of the ball with respect to trim position ∆x

Fig. 10. Voltage output by the controller with respect to trim voltage ∆u

the Kepco power amplifier. We calculated new gains, this
time reducing the value of R to 0.0000001 to accomodate
the amplifier limits. The new gains had values of K=[3864
3162.7]. The data obtained is shown in Fig. 12 and Fig. 13.

In this new case, the magnetic ball levitates briefly and
then falls. It can be assumed that while the controller is
operating correctly, it has insufficient control authority, i.e.,
enough magnetic force, to make the ball levitate. Changing the
value of R once again, this time to 0.001, we obtain the gains
of K=[1276.8 43.8]. This time the ball successfully levitates.
The data obtained is shown in Fig. 14 and Fig. 15.

B. PD and PID Controllers

In the next step, the full-state feedback controller was
replaced by a PD controller. In this specific scenario, the
architecture of both controllers is exactly the same: therefore

Fig. 11. Change in position of the ball with respect to trim position ∆x

Fig. 12. Voltage output by the controller with respect to trim voltage ∆u

Fig. 13. Change in position of the ball with respect to trim position ∆x

using the same gain values we should expect a similar result.
By setting Kp = 1276.8 and Kd = 43.8, the ball levitates. The
data obtained is shown in Fig. 16 and Fig. 17. You may see
a photograph of our ball levitating in Fig. 18.

We empirically tweaked data to find a suitable integral gain,
and settled on a gain of Ki = 10. When we add the integrator
gain to turn the PD into a PID controller, it can be observed
that the evolution of both parameters (∆x and ∆u) is fairly
similar either controller. The data obtained is shown in Fig. 19
and Fig. 20.

5. CONCLUSIONS

IN THIS LAB ACTIVITY, we studied and utilized methods
to analyze and control a highly unstable, non-linear system.

Each part of this laboratory has been extremely challenging,
from obtaining the experimental parameters to developing a
successful controler. This lab was based on the very important
assumption that even non-linear systems can be approximated
as linear on very small intervals. We simulated and studied a
linear plant based on this hypothesis. Other important points
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Fig. 14. Voltage output by the controller with respect to trim voltage ∆u

Fig. 15. Change in position of the ball with respect to trim position ∆x

Fig. 16. Voltage output by the controller with respect to trim voltage ∆u

Fig. 17. Change in position of the ball with respect to trim position ∆x

Fig. 18. Metal ball levitated using our PD controller.

Fig. 19. Voltage output by the controller with respect to trim voltage ∆u
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Fig. 20. Change in position of the ball with respect to trim position ∆x

of this activity were the study and test of full-state feedback
and PID controllers: while theoretically a full-state feedback
controller can achieve any goal, the physical limits of the
system can be a serious obstacle in its implementation. On the
other hand, a PID controller, while using simpler logic, seems
very effective in practical use. The main disadvantage of the
PID controller is the lack of an effective method to calculate
the desired gains. In the previous scenario, an optimization
approach to the problem can be taken by using the LQR
algorithm.

A. Further Work

We obtained rather successful results from our linearization
and subsequent gain choice; however, it would be interesting to
study this system as a non-linear one, and see if the application
of non-linear control techniques could produce great stability
and robustness. We did minor tests with regards to robustness–
we were able to hang several small metal balls from our
levitating ball without it falling–but a greater study of the
robustness of the system, including the maximum disturbance
force that could be applied while still keeping the system
stable, would be of great interest for further work.


