
Multimedia Feature Generation of Movie Trailers for Genre Prediction

John Fuini, Nathaniel Guy, and Yong Han Noel Kim
University of Washington, Seattle WA

Abstract— This paper presents a collection of techniques
for the generation of visual and audio features based on
film trailer data, and then shows a viable machine learning
solution for building a classifier using these features which
can identify the genre of a previously unseen film trailer. Our
approach sought to capture, using computer vision and audio
analysis techniques, the essential data within the trailer which
is more characteristically informative as to the film’s genre.
These features included average intensity and color, number
and length of distinct shots, amount of detail, amount of
consecutive darkness, average volume, sudden changes in sound,
and frequency distribution of sound. Using these features,
along with genre metadata for each trailer, we trained both
a Binary Decision Tree and a Support Vector Machine model
to identify the genres. We applied extensive cross-validation
and demonstrated classification accuracy greater than 65% for
the top ten most common genres, and greatrer than 90% for
five of the top ten most common genres. We also performed a
Singular Value Decomposition (SVD) to identify the dominant
modes of the feature set, and showed that the success rate of a
classifier built from a one-mode reconstruction of the data only
reduced our accuracy by, at most, 6%. We envision that our
technique can be improved and applied to a variety of problems,
and may be capable of competing with human accuracy on a
similar problem.

I. INTRODUCTION

Movie trailers are one of the most effective advertising
tools for the film industry. They deliver relevant information
such as background, cast, theme, plot and more, in a limited
amount of time. As such, trailers can be considered a subset
of a movie which contains its principal components. With
this idea in mind, we developed an algorithm which classifies
movie trailers by their genre. This is a familiar process to
all movie-viewers: movie viewers are generally able to tell if
a certain movie is a comedy film, action film, documentary,
etc. within the first minute of watching a trailer based on
myriad cinematic features within it. Viewers have developed
this cognitive ability by watching countless movies of various
genres over time, and have subconsciously learned to identify
the cinematic features associated with certain genres. Our
algorithm is an adaptation of this process using machine
learning. This report describes our process of identifying
cinematic features from a large set of trailers of known genre,
training a machine learning algorithm to develop classifica-
tion criteria based on these features and genre metadata, and

Nathaniel Guy and Yong Han Noel Kim are Masters students in the
University of Washington Department of Aeronautical and Astronautical
Engineering, and can be reached at natguy@cs.washington.edu
and kimber.noel@outlook.com, respectively. John Fuini is a PhD
student in the University of Washington Department of Physics, and can be
reached at fuini@uw.edu.

testing the generated classification criteria on a set of trailers
to assess the effectiveness of our approach.

A. Sample Data Set
For the bulk of our classifier training and testing, we

used trailer data from roughly 1,000 major motion pictures
released within the last decade. These trailers were all high-
resolution (the majority were 720p), with a typical framerate
of 24 FPS. The trailers were downloaded from online sources
using custom-built scripts, along with movie metadata (such
as genre), which was scraped from wwww.movie-list.com.

II. RELATED WORK
Zeeshan Rasheed et al., in their On the Use of Computable

Features for Film Classification[1], developed an algorithm
for film classification based on film previews. They limited
themselves to visual features only, such as average shot
length, color variance, motion content and lighting keys,
and constrained their classification to four genres: comedy,
action, drama and horror. In contrast, our work aims to
create an algorithm that can classify a larger number of
genres, using more features derived from both video and
audio features, and with greater robustness than the technique
in [1].

III. COMPONENT ARCHITECTURE
A. Feature Generation via Video Processing

We implemented a number of computer vision techniques
to calculate features from each trailer’s video data. The
majority of our video processing was utilized the OpenCV
“cv2” module in the Python programming language [2].

1) Total Time/Number of Frames: OpenCV allows the
processing of video data on a per-frame basis. Individual
frames were counted, in order to get a total run-time of any
given trailer in terms of frame count. OpenCV can provide
the frames per second (FPS) for a given trailer as well,
and this allowed us to calculate the run-time of trailers in
seconds.

2) Average Intensity: Average grayscale intensity, across
all pixels and all frames, was calculated using standard RGB
weights for grayscale reduction:

Average intensity = 0.2989R+ 0.5870G+ 0.1140B

Other statistical metrics, such as intensity standard devi-
ation, min, and max, were calculated as additional features.
Note that certain regions of many trailers constituted a black
letterbox, and could be excluded from this calculation after
the determination that pixels at certain coordinate positions
remain black throughout the entire duration of a trailer.



3) R, G and B Components: R, G and B components
denote the proportion of red, green and blue colors for a
given pixel. We calculated the average intensities along each
of these color channels, across pixels and across all frames.
(In order to minimize runtime memory requirements and
simplify code structure, we elected to include the letter-
box regions in this calculation for some of the statistical
measures, such as color channel standard deviations and
minimum/maximum intensities.)

4) Number of Shots: We detected a shot transition by
examining and comparing color histograms of adjacent
frames. When the chi-squared distance between two his-
tograms exceeds a predetermined shot transition threshold,
we determine that there was a shot transition between the
two frames. The predetermined threshold was made by hand
by watching trailers and tweaking our shot detection until
it performed satisfactorily. One disadvantage to this method
is that algorithm cannot differentiate between fast camera
movement and complete change of shots, since with fast
camera movement, the distribution of colors within the frame
can vary as much as with an actual change of shot, especially
with large moving objects. See Fig. 1 for an example of
frames across a shot transition and their histograms.

Fig. 1: Three example video frames are shown on the left,
with their color histograms on the right. The first two frames
are similar, and are part of the same shot; note their similar
histograms. The third frame, only a fraction of a second later,
has a starkly different histogram, and would thus be detected
as a new shot.

5) Shot Length: Once the time-stamps of shot transitions
were recognized, we were also able to calculate metrics
based on the length of shots: mean, standard deviation, and
minimum/maximum shot lengths. The mean shot length,
for each trailer, varied greatly on our sample set, from 0.2
seconds to 3 seconds.

6) Detail Score: We defined a measure of the amount
of complex detail in a trailer through the use of the Canny
edge detection filter [3]. By applying the Canny algorithm to
a given frame, we can calculate a binary mask wherein all of
the “edge pixels” in that frame have a value of 1. Then, by
summing all of pixels in the frame, and summing all of the
frames into the trailer, we can get a total “detail score” for
that trailer. That score can then be scaled by the number of
frames to normalize and find the average detail per frame.
We calculated detail score features (including mean value,
standard deviation, and minimum/maximum values) in this
way. See Fig. 2 for an example of edge-detected images from
which detail scores were calculated.

Fig. 2: Two example video frames are shown on the left,
with their Canny edge-detected versions on the right. By
counting the white (edge) pixels in the images on the right,
a “detail score” can be calculated, as a rough metric of the
detail complexity of the frame.

7) Dark Scenes: We defined the notion of a “dark scene”
as a period of consecutive frames with very low average
values (i.e., black transitions). Their lengths were recorded,
from which mean length, standard deviation of length, and
minimum/maximum lengths were calculated. The percentage
of dark scene frames in each trailer was also calculated.

B. Feature Generation via Audio Processing

From the trailer videos, we isolated the audio component
using a sampling frequency of 44.1 kHz. A series of analyses
was performed on this audio data in order to extract features.

1) Volume: Mean: Mean volume for each trailer was
calculated by averaging the amplitudes of sound waves over
the entire duration of the trailer. One motivation behind
extracting this feature was that a trailer saturated with loud
noises would have larger value of mean volume than trailers
with relatively calm sounds. Also, typically trailers with loud
noises–explosions, jet noise, shouting, etc.–are associated
with genres such as action, thriller, and adventure. On
the other hand, trailers with calm audio, and even some
quietness, may be associated with genres such as drama,
history, and family.

Standard Deviation: all trailers were sourced from a single
film site, but there was no guarantee that their audio was
all equalized to the similar degree, especially because many



were produced by different companies. Thus, a higher mean
volume could simply indicate a trailer that’s louder in general
due to different equalization characteristics, rather than an
abundance of loud sound events. In order to get a sense of
the variation of volume in each trailer, we calculated standard
deviation of the sound wave amplitude over the entire trailer
as well.

Minimum and Maximum: Minimum and maximum volume
for each trailer were calculated based on the waveform data.
On a scale from 0.0 to 1.0, most trailers had a minimum vol-
ume near 0.0, while some had marginally higher minimum
values, such as 0.03. Maximum volume generally fell into
the range of 0.1 to 0.5.

2) Sudden Rise/Fall of Volume: We defined the concept
of a sudden rise and sudden fall of volume. Respectively,
these represent an increase and a decrease of volume within
a small time period, possessing a magnitude larger than the
standard deviation of the volume across the whole trailer.
Identifying the number of these events within a trailer’s audio
allowed us to study its audio dynamics, as we intuited that
sudden increases of volume might be common during trailers
that sought to startle viewers (such as those horror or action
films).

Fig. 3: An audio sample is shown, with a sudden rise and
a sudden fall highlighted in orange and green, respectively.
Note that the interior fall and rise are not captured as sudden
changes, due to their more gradual change.

3) Percentage of Sound Corresponding to Different Oc-
tave Bands: For this feature, the waveform of each trailer
was transformed to the frequency domain using the Fast
Fourier transform (FFT). Its frequencies were divided into
eleven bands in the audible range, commonly defined as
octave bands (11Hz ∼ 22720Hz). The magnitudes of the
frequency components in each band were summed together,
and normalized so that the sum of magnitudes of all octave
bands would be 1. The resulting binned magnitudes repre-
sented the composition of sounds of each trailer with respect
to these eleven octave bands.

C. Use of Features in Machine Learning Algorithm

All extracted features from each trailer were compiled into
a single comma-separated variable (CSV) spreadsheet. In
addition to our generated features, the spreadsheet contained
the genre labels for each trailer as well. Movies were
not limited to one genre. For instance, there were movie
trailers with multiple genre labels such as action-comedy,
or mystery-horror-thriller. Because of this, we have a multi-
class problem, and have opted the one-vs-all approach. This
means creating a classifier for one class, i.e. the drama genre,

and simply identifying trailers as either drama (positive) or
not drama (negative).

For each genre, we passed our CSV spreadsheet to Mat-
lab’s fit binary classification decision tree function (fitctree)
to build a decision tree. Only 80% of the trailers randomly
selected from the full set of trailers were used for building
the tree. This subset is known as a training set. The tree
was then used to predict on the remaining 20% of trailers
using Matlab’s classification predict function (predict), and
its success and failure rates were recorded. This process was
repeated 40 times, each time with a new set of random trainer
sets, with the success rates averaged, for the purpose of cross-
validation.

We experimented with the support vector machine (SVM)
model as well. The classifier was created using MATLAB’s
SVM fit function (fitcsvm), used for classification, the results
were cross-validated (crossval), and their accuracies were
noted (kfoldLoss).

IV. RESULTS

The rates of success of classification by our algorithm for
top ten most popular genres are shown in Fig. 4. Success
rates were calculated using both binary decision tree, and
support vector machine sub-algorithms. For instance, the
Drama genre had 58% and 66% successful classification for
binary decision tree and SVM respectively. It had the lowest
success rate of top-ten-genres, but the rest genres registered
consistently over 70% success rate. SVM had roughly 8%
higher success rate for a given genre than binary decision
tree.

Fig. 4: Classifier success rate for ten most popular genres.

In order to gain some insight to what features are important
for the classification, we performed singular value decompo-
sition on the set of movie trailers and their features. As can be
seen in the plot of covariances of principal modes (fig. 6), one
can see that there is no set of predominant modes that affect
the decision, but its rather a complicated combination of all
modes. The first four principal modes contain approximately
25% of energy in all modes. These four modes consist of
features of differing degree. Figure ?? display the weights
of each feature in four prominent modes. We could not



Fig. 5: Covariances of modes

Fig. 6: Compositions of features for each modes

identify any apparent patterns for any of these modes. We
experimented with the concept of dimension reduction by
trying the classification using one, four and all of the modes.
The rate of success are plotted in fig. 7. Surprisingly, the
difference of success rate between one-mode classification
and all-mode classifications was less than 10%.

V. LESSONS LEARNT

A. Standardization of Features

One crucial mistake that was overlooked during the initial
phase of our development was negligence to standardize
features. The original features had different units, and dif-
ferent raw values, often differing by order of magnitudes.
For example, features such as ’total run-time’ or ’number
of shots’ had values in the range of hundreds, while features
such as ’min. volume’ or ’min. shot length’ had values in the
magnitude of one decimal points. Without standardization,
variations of values present in features with large raw values
seem much greater to Matlab’s trainer than those present
in features with small raw values. In addition, the mean
value of many of the features were not zero. This resulted

Fig. 7: Classifications made with one, two and four mode
approximation compared to the original classification made
with a complete set of modes

in erroneously result where those features with large values
showed up as modes largely driving the decision tree. Once
all the features were standardized, however, we achieved the
results presented in the result section above. The principal
modes and the composition of these modes became more
complicated, but the algorithm treated features of different
nature more fairly. The classification success rate was not
affected much.

B. Unsuccessful Feature Extraction

One failed attempt to acquire features from the audio
portion of movie trailers was to perform a Principal Com-
ponent Analysis (PCA) using singular value decomposition.
The goal of this process was to identify a series of principal
modes and their components in each of the movie trailers. We
hypothesized that the values of principal components could
be used as features. We clipped 10-second portion of audio
from each trailer to reduce the size of the data. Nonetheless,
the matrix at which the singular value decomposition was
to be performed had a size of 958-by-227150. This was
computationally very expensive, with a runtime on the order
of 10+ hours on modern personal computer. Furthermore,
there was no guarantee that 10-second clipping would cap-
ture a signature sound of each trailer. (In a preliminary
attempt, a 10-second clip was clipped at the timestamp of
t = total time

2 ). Given these reasons, the attempt was deemed
implausible in the sense of cost-benefit, and was abandoned.

VI. FUTURE WORK

An interesting topic of future work is comparing our
results with the performance of human subjects. Since the
definition of a “genre” is rather loose, it is often the case that
there are many right answers for the genre of a given trailer.
Thus, it is likely that human subjects’ guesses could differ
from the genre labels in our metadata. We hypothesize that
it may even be possible for machine learning to outperform
humans at this task.



VII. CONCLUSION

This work demonstrated the construction of a movie genre
classifier using features acquired from video and audio
portions of movie trailers. A series of video analyses using a
computer vision library generated numerous video features,
such as detail scores, dark scenes, color and intensity profiles,
etc. Temporal and frequency analysis of audio identified
sharp increases and decreases of volume and frequency
spectra. MATLAB classifiers trained using these features
classified movie genres with success rate ranging from 60%
to 95%. Of two classifiers, the binary decision tree and
support vector machine, the latter had approx. an 8% higher
likelihood of successful classification overall.

It is worth noting that our machine learning algorithm’s
pipeline has a minimum amount of required human interac-
tion. The only step within that necessitates human input is
providing a genre classification for the initial set of movie
trailers used for training. The rest of the pipeline is almost
entirely automated. While in this project we tested our
algorithm using movie trailers, it can be adapted to any envi-
ronment that requires computer vision-audio based machine
learning. This can include surveillance, video tracking, and
other applications.

VIII. ACKNOWLEDGMENTS

We would like to thank Dr. Nathan Kutz for his advice
and feedback on our techniques used in this project. We’d
also like to thank Kam Chancellor, because Nathan would
want us to.

REFERENCES

[1] Rasheed Z., Sheikh Y., Shah M., On the Use of Computable Features
for Film Classification, IEEE Transactions on Circuits and Systems
for Video Technology, Vol.15 No.1, Jan. 2005.

[2] OpenCV — OpenCV. Itseez. Web. 09 Mar. 2016. http://opencv.org/.
[3] Canny, J., A Computational Approach To Edge Detection, IEEE Trans.

Pattern Analysis and Machine Intelligence, 8(6):679698, 1986.


