
Basic State Estimator to Track Juggling Balls in Video Data

Nathaniel Guy

Abstract— This paper discusses the development of a basic
state estimator for tracking and predicting the trajectory
in juggling balls in video data within the 2D plane. State
observations are obtained for every frame of video through a
sequence of applications of computer vision algorithms. First,
background pixels are removed using MOG background sub-
traction with adaptive Gaussian selection. The resulting image is
run through a color thresholding algorithm to filter out colors of
interest. The resulting points are denoised using morphological
erosion and dilation and outlier rejection, followed by k-means
clustering to estimate ball centers, and position deltas are
calculated for velocity observations.

Finally, a smoothing filter is utilized to combine the state
observations with a propagated prediction of the current state,
based on the known system dynamics. This combined state
estimate is overlaid onto the video, along with the ball state
propagated into the future using Euler’s method, to show an
estimated future trajectory.

I. INTRODUCTION AND BACKGROUND

Before diving headfirst into the problem, let’s first take a
10,000-foot view of the surrounding context.

A. The Ball Tracking Problem

The problem examined in this research involves a scene
with a mostly static background, and a human in the fore-
ground. The human holds a number of balls, throwing them
repeatedly into the air and catching them. The challenge
is determining from this visual data the current state (2D
position and velocity) of each of the balls, and to then predict
what the states of these balls will be in the near future. Once
determined, all of this information can be overlaid onto the
video stream to visualize it and to visually check its accuracy.

B. Previous Work in Tracking and Prediction

The problem of tracking and predicting the movement
of objects subject primarily to gravity and and initial im-
pulse is an extremely old one, predating controls research
by millenia, and going back to the early days of hunting
and warfare. Prediction of the movement of projectiles is
necessary for long-range combat, and humans have been
using projectiles to hunt since pre-historical times. In the
1900s, however, the creation of advanced sensors and mi-
crocontrollers, along with the development of fields of state
estimation and control theory, turned the problem of tracking
into a problem that could be solved in real time. The Kalman
filter was appiled in the 1960s to the problem of estimation
for Apollo lunar trajectories, and has been applied countless
times since then [1].
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The approach of applying Kalman filtering to computer
vision problems is not new, either, and filtering data obtained
with vision algorithms is used in both academia and industry.
Refer to [2] for a thorough treatment of the topic.

C. System Model
The physics of the system under examination are very

straightforward. The system is subject to basic Newtonian
gravitation, with an acceleration of approx. 9.81m/s2 towards
the center of the Earth. On the velocity and size scale of
juggling balls, drag is relatively negligible, so only gravity
and periodic impulses (due to normal force from ball ma-
nipulation). The position thus updates due to the velocity
provided by these impulses, which is in turn updated based
on the gravitational acceleration.

The system may be expressed like so:[
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The simplicity and linearity of this system makes it a

very good target for prediction, even with methods that
are inexact and still nascent. Towards this end, let’s apply
the techniques of computer vision to the problem of the
initial state observation, and then filter those observations
to estimate the state of the system.

II. COMPUTER VISION TECHNIQUES
A variety of techniques were used to filter the frames of

video data and extract meaningful state observations from
them.

A. Background Subtraction
First, the background pixels of the video feed frames

(i.e., those with very little movement) were separated from
those of the foreground (i.e., those with a greater degree
of movement). To accomplish this, the MOG (Mixture of
Gaussians) background subtraction method was employed.
This technique characterizes each pixel by its RGB intensity,
and calculates a Gaussian probability distribution at each
pixel for what RGB values it is likely to have. Those pixels
that fall into the less probable areas of the distribution are
considered to be transient, and thus, to be foreground pixels.
The Gaussian curves are adaptively determined and their
parameters evolve over time, making the model robust to
camera movements and lighting changes. See [5] and [6] for
more information.

This technique allows for foreground pixels to be reliably
isolated, dramatically decreasing the search space for signif-
icant “ball pixels” and speeding up the execution time of the
algorithms that follow.



Fig. 1. Points corresponding to a ball in the image, separated via color
range thresholding.

B. Thresholding

After background subtraction, the remaining pixels will
correspond to moving objects, but are just as likely to
correspond to human appendages or shadows as they are to
the objects of interest (juggling balls). To further isolate the
balls, a simple color thresholding technique is used, wherein
the expected color ranges that a given ball can take are
determined and pixels that fall outside of these ranges are
discarded. (This technique can also be employed multiple
times with different color ranges to differentiate between
different colors of balls.) Just before color thresholding is
used, a median blur with a 9 pixel by 9 pixel kernel size
is applied to smooth the effects of Gaussian noise on pixel
color. A post-thresholding sample image is shown in Fig. 1.

Though for the purposes of this research the color ranges
of the balls were determined by hand, there are methods
capable of characterizing these color ranges while discarding
non-ball colors. An application of the Hough circle trans-
form, applied over time to discover optical flow of circular
objects, would be one way to characterize such color ranges,
but was not employed in this project [3].

C. Morphological Denoising and Outlier Rejection

After background subtraction and thresholding are com-
plete, extraneous noise pixels are removed through two
additional methods. First, the image is eroded then dilated:
an operation is first performed that shrinks white pixel
shapes by setting every pixel to the minimum value in its
neighborhood for a number of iterations, then the opposite
effect is applied, wherein white pixel shapes are expanded
multiple times by setting every pixel to the maximum value
in its neighborhood. This causes small bits of noise to erode
away entirely, and they don’t return during the dilation step.

Subsequently, an outlier rejection algorithm is applied,
whereby the mean position of all of the pixels is found, and
any pixels that fall outside of two standard deviations of
the mean are discarded. This removes any extraneous pixel
groups that are far from the central grouping of pixels. It
should be noted that this technique can have deleterious
effects to object isolation if there are multiple meaningful
pixel clusters at this point, which would occur if more than

Fig. 2. Thresholded points corresponding to a ball in the image, after
morphological denoising.

one ball has the same color. In those situations, it is better to
avoid application of this technique. It should also be noted
that outlier rejection incurs a major time penalty, and it seems
a likely candidate for exclusion for performance-driven or
real-time applications.

A post-denoising sample image is shown in Fig. 2.

D. Clustering for Center Determination

After all of the aforementioned techniques have been
applied, the remaining pixels should be clusters of points
that are at least located on the balls, if not necessarily
equivalent to all of their pixels. There should be one cluster
corresponding to each ball. (Typically, it seems most effective
to isolate ball colors at the thresholding step, but if there are
multiple balls of the same color, there will be multiple groups
of clusters at this step.)

K-means clustering is applied in order to find the centers
of these clusters, and these centers are considered to be the
positions of the balls. In practice, this often ends up being
slightly inaccurate, as the spherical shape of the balls and
non-uniform lighting in the scene usually results in shading
that colors each ball differently on either side, and causes un-
even object isolation. This causes k-means cluster centers to
be displaced towards the side of greater recognition (usually,
of greater color brightness). There are various techniques that
may be able to be used to counteract this effect: future work
could include refinement of these cluster centers using outlier
rejection on the clusters before the application of a minimum
enclosing circle on the remaining pixels.

After clustering, the observed positions are determined and
can be drawn onto the original source image. A sample image
of this is shown in Fig. 3.

E. Optical Flow Estimation for Matching

One vision-related problem still remains, which a careful
reader may have already anticipated: if two balls are the same
color and have been divided into two colors, the problem
emerges of tracking each one independently between frames
while maintaining a consistent identity. In other words, if
there are two orange balls, which one is which across two
subsequent frames?



Fig. 3. Balls in the image are marked with observed positions based on
k-means clustering.

Techniques from the field of optical flow estimation can
be utilized to inform these decisions. In this implementation,
the positions of all balls are maintained between frames, and
at each new frame, a least-squares estimate is made in 4-
dimensional velocity and position space in order to estimate
which ball is which. The matching that results in the smallest
squared velocity and position change is the one that will be
used. More information about this technique, and others, can
be found in [4].

Two consecutive frames, where markers show ball identi-
ties being maintained across frame boundaries, are shown in
Fig. 4.

III. STATE ESTIMATION

After computer vision techniques have been applied to
isolate the “ball pixels,” state estimation techniques can be
applied to determine the position and velocitiy of each ball,
and to predict their future states as well.

A. Position and Velocity Observation

As discussed above, the observed positions of each ball
are determined after the application of k-means clustering.
Their observed velocities can be determined by comparing
these positions with positions estimated in the previous time
step.

B. Position and Velocity Prediction

In addition to our observed values, predictions can be
made for the position and velocity for the current time
step using the previous state estimate and a knowledge of
the system dynamics. When in mid-air, the only significant
force affecting the balls should be the force due to gravity,
which will cause an acceleration of approx. 9.81 m/s2 in the
negative vertical direction. The velocity of the balls should
change based on this acceleration, while the position of the
balls changes based on the velocity. Thus, by multiplying the
calculated velocity by the timestep and adding to the previous
position, we can get the current position, and similarly with
the velocity:

Fig. 4. Two consecutive video frames illustrating how similarly colored
balls are tracked independently (note the colors of the markers on the balls).

xk = xk−1 + ẋk−1∆t

ẋk = ẋk−1 + ẍk−1∆t

ẍk = (0,−9.81) m/s

The astute reader may have already noticed that these
predictions require a knowledge of the acceleration due to
gravity in terms of screen pixels. This can be determined
by calculating a mapping from pixel space to real-world
space. For the purposes of this project, “pixels per meter”
calculations were determined by hand; however, it would be
possible to empirically determine this information during a
first pass on the video data by observing the acceleration of
the balls within pixel space.

C. Filtering for State Estimation

Although significantly filtering was already performed
during the ball isolation steps, the system is still subject to
noise from incorrect position estimates and from the wholly
unanticipated impulses applied to the balls whenever touched
by the juggling. It is possible, however, to smooth this noise
with state estimations that incorporate a filter based on the
predicted state and the observed one. These techniques were
applied to the states discussed above, resulting in somewhat



Fig. 5. Trajectories of the balls are drawn using Euler’s method to propagate
their estimated states forward in time.

smoother state estimates (but in some artifacts, which are
discussed in the “Results” section.)

D. Trajectory Prediction

In addition to a state estimate determination, a prediction
of the future states of each ball can be made using similar
techiques to those described in “Position and Velocity Predic-
tion” above. The states of the balls are propagated forward in
time using Euler’s method, and are then shown on the screen
to visualize the future trajectory of the ball. A sample image
of this is shown in Fig. 5.

IV. RESULTS
Various statement estimation techniques were attempted to

perform the tracking task, with varying degrees of accuracy.
Trials were run across multiple videos with differing lighting
conditions, scales, and ball colors. Though most of the work
was done based on pre-recorded videos, application to real-
time video was also demonstrated.

A. Observed States

When the observed states were used directly as the
estimated states of the balls, the result was surprisingly
good; though significant error was visible with a thorough
examination of the data being played in slow-motion, this
error was not distracting and, to the eye, the tracking was
rather good. (Due to time constraints, quantitative results for
accuracy have yet to be obtained.)

A simple smoothing technique was performed by averag-
ing observed velocity across timesteps, which resulted in a
surprisingly smooth

B. Weighted State Combination

A slightly more complicated technique was that of using
a weighted combination of observed and predicted states, as
with a constant-gain Kalman filter. This allowed adaptability
and “tweaking” to alter tracking accuracy. Slightly better
results, with results more robust to tracking, were obtained
with this technique.Weights that favored instantaneous ob-
servations were favored, probably due to integral error of

slightly erroneous state estimations causing a high prediction
weight to have a hard time converging on the correct state.
Prediction accuracy seemed to vary often depending on the
variables that are difficult to quantify, such as amount of spin
on non-homogeneous balls, lighting in the room, length of
time that balls were held, and other factors.

Equal weights for both instantaneous velocity observations
and position observations were used, perhaps resulting in a
larger degree of error than if the weights had been based on
error covariances.

C. Kalman Filtering

The Kalman filter incorporates both of these state determi-
nations to build a (hopefully) more accurate state estimate,
wherein the gains on each type of state determination are
based on the changing state estimate covariance. However,
full Kalman filtering was not used for this project, due to
issues with quantifying process and measurement covariance
accurately. Further work could attempt to adequately quantify
these covariances in order to filter the data accurately enough
to obtain satisfactory covergence properties.

V. CONCLUSIONS
This project demonstrated how the application of a num-

ber of computer vision techniques, combined with control-
theoretic state estimation techniques, can result in a robust
(and visually pleasing) system for tracking the movement of
balls in a video scene. There is much room for improvement:
it would be of great interest to remove the need to manually
specify color ranges for balls, and many improvements could
be made (as discussed earlier) to obtain more accurate ob-
servations for ball centers. Additionally, proper quantification
of error covariances to allow varying Kalman gains could be
very beneficial to tracking accuracy. However, the results as
obtained are still satisfactory and seem promising for future
applications.
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