Robotic Line
Follower

AA448 Final Project
Federico Alvarez
Nat Guy




The Robot

oArduino Uno board (ATMEGA328 processor)

oBorrowed from
RAIN lab

oProgrammable
in C++




Sensors and Actuators

QRD1114 Reflective

Object Sensors (5)

* Infrared emitting diodes
* Phototransistors
 Spaced 1cm apart

Differential Drive
e Dual motors
» Speed adjustable with PWM

(varying duty cycle)

Low-friction ball bearing




Control Goal

oWant robot to be able to follow black lines

oBlack line will be directly in the center of the
sensors

oCenter as setpoint, differential drive as
actuators




Characterizing Sensors (1)

oNecessary to find output-voltage-to-intensity
function for IR sensors

oFind IR sensor voltages as robot advances
along black-white gradient







Characterizing Sensors (3)

Phototransistor Yoltage vs. Surface Intensity

25

[

@
o=
©
=
=
—
o
=
0
c
I
—
-
o
-
o
=
o

—
n

0.2 0.3 0.4 05 06 07 0.8
Surface Intensity (0: white, 1: black)




Characterizing Sensors (4)

Phototransistor Voltage vs. Surface Intensity

w
n

(43}

25

[

@
o
I
=
=
—
=]
=
0
c
@
e
=
=]
-
=]
=
o

—_—
()]

03 04 05 06 07 08
surface Intensity (0 white, 1: black)




Characterizing Sensors (5)

Phototransistor Yoltage vs. Surface Intensity

T

25

[

Y
(=2}
o
=
s
—
=]
=
@
c
o
—
=
=]
-
=]
=
o

—
n

0.3 0.4 05 06 0.7
Surface Intensity (0: white, 1: black)




haracterizing Actuators (1)

Motor Calibration: Duty Cycle Vs. Distance Traveled in 4s

e et Y S -
: ; : ——Experimental Values

o Polyfit: Distance = 0.27*Value - 4.23

Duty Cycle (%)

! i
0.3 0.4
Distance (m)




haracterizing Actuators (2)

Motor Calibration: Duty Cycle Vs. Velocity

. . s
——Reduced Experimental Data
o Polyfit: Velocity = 0.27*Duty Cycle - 4.23

Duty Cycle (%)

I
0.08 0.1
Velocity (m/s)




System Diagram

0.78

Left Wheel
Idle Speed Duty Cycle

left_wheel_change

e ith PIDE) Turn Amount :
right_wheel_change

Setpoint PID Controller
(position of line in cm) Calculste Wheel Speeds Robotic Line
Follower

Right Wheel
Idle Speed Duty Cycle

0.78

Calculate Line Position

o

d Line Position (cm)

fline_position ‘
fen




Determining Gains

oUsed Ziegler-Nichols
oTurned up Kp until robot oscillated periodically
oCalled that Kp value “Ku” and period “Tu”
oKp = 0.6*Ku
oKi = 2Kp/Tu
oKd = Kp*Tu/8
oHand-tweaked afterwards




Implementation

oProgrammed in C++
oAbout 300 lines of code
oControl loop runs about 60 times per second

o0nly used last 60 integral values (to avoid
windup)

oAverage of 4 derivative values (to smooth
noise)

oKp = 130, Ki = 60, Kd = 2




Demonstration




